BE Semester- III (Instrumentation \& Control) Question Bank

(DIGITAL TECHNIQUES)

All questions carry equal marks(10 marks)

Q. 1	Convert the following i. hexadecimal equivalent of the decimal number 256. ii. octal equivalent of the decimal number 64 iii. decimal equivalent of $(123)_{9}$ iv. the decimal number 214 to hexadecimal v. 378.93_{10} to octal
Q. 2	Convert A3BH and 2F3H into binary and octal respectively
Q. 3	Reduce the expression: I. $\mathrm{A}[\mathrm{B}+\bar{C}(\overline{A B+A \bar{C}})]$ II. $(\overline{A+\overline{B C}})(\mathrm{A} \bar{B}+A B C)$
Q. 4	Simplify using k-map to obtain a minimum pos expression: $\begin{aligned} & \left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}+\mathrm{D}\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right) \\ & \left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}+\mathrm{D}\right) \end{aligned}$
Q. 5	Reduce the following equation using Quine Mc Clucky method of minimization F $(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=_\mathrm{m}(0,1,3,4,5,7,10,13,14,15)$
Q. 6	Using a K-Map, Find the MSP form of $\mathrm{F}=__{\text {(}}(0-3,12-15)+\ldots \mathrm{d}(7,11)$
Q. 7	Using a K-Map ,Find the MSP from of $\mathrm{F}=\ldots(0,4,8,12,3,7,11,15)+$ d(5)
Q. 8	State and Prove Demorgan's theorem
Q. 9	Define half adder and full adder. Design full adder using half adder.
Q. 10	Define half subtractor and full subtractor. Design full subtractor using half subtractor.
Q. 11	Explain BCD-to-Seven segment decoder.
Q. 12	Define comparator. Explain 4-bit magnitude comparator with logic diagram.
Q. 13	Draw and design 2-bit magnitude comparator circuit.
Q. 14	Design a BCD adder using two 4 bit address.
Q. 15	Distinguish between a multiplexer and a demultiplexer.
Q. 16	Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates an output binary number equal to the square of the input numbers.
Q. 17	What is a PLA? Explain it with example.
Q. 18	Pistinguish between combinational and sequential switching circuits.
Q. 19	Briefly explain the conversion of flip-flops with block diagram and also explain steps of conversion of flip-flop with an example.
Q. 20	Discuss the applications of flip-flops.
Q. 21	Explain position edge-triggered D flip-flop.

Q. 22	Explain Master-Slave (pulse-triggered) S-R flip-flop.
Q. 23	Explain triggering of flip-flops with waveform.
Q. 24	Explain the gated SR latch flip-flop.
Q. 25	Design SR flip-flop using JK flip-flop.
Q. 26	For the clocked JK flip-flop writ the state table, draw the state diagram and the state equation.
Q. 27	For the clocked D flip-flop writ the state table, draw the state diagram and the state equation.
Q. 28	Explain with logic diagram of 4-bit serial-in, serial-out, shift register.
Q. 29	Explain with logic diagram of 4-bit serial-in, parallel-out, shift register.
Q. 30	Explain with logic diagram of 4-bit parallel-in, serial-out, shift register.
Q. 31	Explain with logic diagram of 4-bit bidirectional shift register.
Q. 32	Distinguish between asynchronous and synchronous counters.
Q. 33	Explain 4-bit ring counter with circuit diagram and waveforms.
Q. 34	Explain 4-bit Johnson counter with circuit diagram and waveforms.
Q. 35	Design and implement a synchronous 3-bit up/down counter using JK flip-flops.
Q. 36	Design and implement a synchronous BCD counter using JK filp-flops.
Q. 37	Define the following terms I. threshold voltage II. propagation delay III. power dissipation IV. fan-in V. fan-out
Q. 38	With the help of a neat diagram, explain the working of a two-input TTL NAND gate.
Q. 39	With the help of a neat diagram, explain the working of any two I. a CMOS inverter, II. a two input CMOS NAND gate III. a two input CMOS NOR gate
Q. 40	What do you mean by interfacing? Why it is required? Explain CMOS to TTL interfacing.

